
Lecture 27

Array Antennas

27.1 Linear Array of Dipole Antennas

Antenna array can be designed so that the constructive and destructive interference in the far
field can be used to steer the direction of radiation of the antenna, or the far-field radiation
pattern of an antenna array. The relative phases of the array elements can be changed in
time so that the beam of an array antenna can be steered in real time. This has important
applications in, for example, air-traffic control. A simple linear dipole array is shown in Figure
27.1.

Figure 27.1: Schematics of a dipole array. To simplify the math, the far-field approximation
can be used to find its far field.

First, without loss of generality, we assume that this is a linear array of Hertzian dipoles
aligned on the x axis. The current can then be described mathematically as follows:

J(r′) = ẑIl[A0δ(x
′) +A1δ(x

′ − d1) +A2δ(x
′ − d2) + · · ·

+AN−1δ(x
′ − dN−1)]δ(y′)δ(z′) (27.1.1)
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27.1.1 Far-Field Approximation

The vector potential on the xy-plane in the far field, using the sifting property of delta
function, yield the following equation, to be

A(r) ∼= ẑ
µIl

4πr
e−jβr

�
dr′[A0δ(x

′) +A1δ(x
′ − d1) + · · · ]δ(y′)δ(z′)ejβr

′·r̂

= ẑ
µIl

4πr
e−jβr[A0 +A1e

jβd1 cosφ +A2e
jβd2 cosφ + · · ·+AN−1e

jβdN−1 cosφ] (27.1.2)

In the above, we have assumed that the observation point is on the xy plane, or that r = ρ =
x̂x + ŷy. Thus, r̂ = x̂ cosφ + ŷ sinφ. Also, since the sources are aligned on the x axis, then
r′ = x̂x′, and r′ · r̂ = x′ cosφ. Consequently, ejβr

′·r̂ = ejβx
′ cosφ.

If dn = nd, and An = ejnψ, then the antenna array, which assumes a progressively
increasing phase shift between different elements, is called a linear phase array. Thus, (27.1.2)
in the above becomes

A(r) ∼= ẑ
µIl

4πr
e−jβr[1 + ej(βd cosφ+ψ) + ej2(βd cosφ+ψ) + · · ·

+ej(N−1)(βd cosφ+ψ)] (27.1.3)

27.1.2 Radiation Pattern of an Array

The above(27.1.3) can be summed in closed form using

N−1∑
n=0

xn =
1− xN

1− x
(27.1.4)

Then in the far field,

A(r) ∼= ẑ
µIl

4πr
e−jβr

1− ejN(βd cosφ+ψ)

1− ej(βd cosφ+ψ)
(27.1.5)

Ordinarily, as shown previously, E ≈ −jω(θ̂Aθ + φ̂Aφ). But since A is ẑ directed, Aφ = 0.
Furthermore, on the xy plane, Eθ ≈ −jωAθ = jωAz. Therefore,

|Eθ| = |E0|
∣∣∣∣1− ejN(βd cosφ+ψ)

1− ej(βd cosφ+ψ)

∣∣∣∣ , r→∞

= |E0|

∣∣∣∣∣ sin N
2 (βd cosφ+ ψ)

sin 1
2 (βd cosφ+ ψ)

∣∣∣∣∣ , r→∞ (27.1.6)

The factor multiplying |E0| above is also called the array factor. The above can be used to
plot the far-field pattern of an antenna array.

Equation (27.1.6) has an array factor that is of the form |sinNx|
|sin x| . This function appears in

digital signal processing frequently, and is known as the digital sinc function. The reason why
this is so is because the far field is proportional to the Fourier transform of the current. The
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current in this case a finite array of Hertzian dipole, which is a product of a box function and
infinite array of Hertzian dipole. The Fourier transform of such a current, as is well known
in digital signal processing, is the digital sinc.

Plots of |sin 3x| and |sinx| are shown as an example and the resulting |sin 3x|
|sin x| is also shown

in Figure 27.2. The function peaks when both the numerator and the denominator of the
digital sinc vanish. This happens when x = nπ for integer n.

Figure 27.2: Plot of the digital sinc, |sin 3x|
|sin x| .

In equation (27.1.6), x = 1
2 (βd cosφ+ψ). We notice that the maximum in (27.1.6) would

occur if x = nπ, or if

βd cosφ+ ψ = 2nπ, n = 0,±1,±2,±3, · · · (27.1.7)

The zeros or nulls will occur at Nx = nπ, or

βd cosφ+ ψ =
2nπ

N
, n = ±1,±2,±3, · · · , n 6= mN (27.1.8)

For example,

Case I. ψ = 0, βd = π, principal maximum is at φ = ±π2 . If N = 5, nulls are at
φ = ± cos−1

(
2n
5

)
, or φ = ±66.4◦,±36.9◦,±113.6◦,±143.1◦. The radiation pattern is seen

to form lopes. Since ψ = 0, the radiated fields in the y direction are in phase and the peak
of the radiation lope is in the y direction or the broadside direction. Hence, this is called a
broadside array.
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Figure 27.3: The radiation pattern of a three-element array. The broadside and endfire
directions of the array is also labeled

Case II. ψ = π, βd = π, principal maximum is at φ = 0, π. If N = 4, nulls are at
φ = ± cos−1

(
n
2 − 1

)
, or φ = ±120◦,±90◦,±60◦. Since the sources are out of phase by 180◦,

and N = 4 is even, the radiation fields cancel each other in the broadside, but add in the x
direction or the end-fire direction.
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Figure 27.4: By changing the phase of the linear array, the radiation pattern of the antenna
array can be changed.

From the above examples, it is seen that the interference effects between the different
antenna elements of a linear array focus the power in a given direction. We can use linear
array to increase the directivity of antennas. Moreover, it is shown that the radiation patterns
can be changed by adjusting the spacings of the elements as well as the phase shift between
them. The idea of antenna array design is to make the main lobe of the pattern to be much
higher than the side lobes so that the radiated power of the antenna is directed along the main
lobe or lobes rather than the side lobes. So side-lobe level suppression is an important goal
of designing a highly directive antenna design. Also, by changing the phase of the antenna
elements in real time, the beam of the antenna can be steered in real time with no moving
parts.

27.2 When is Far-Field Approximation Valid?

In making the far-field approximation in (27.1.2), it will be interesting to ponder when the
far-field approximation is valid? That is, when we can approximate

e−jβ|r−r
′| ≈ e−jβr+jβr

′·r̂ (27.2.1)

to arrive at (27.1.2). This is especially important because when we integrate over r′, it can
range over large values especially for a large array. In this case, r′ can be as large as (N−1)d.

To answer this question, we need to study the approximation in (27.2.1) more carefully.
First, we have

|r− r′|2 = (r− r′) · (r− r′) = r2 − 2r · r′ + r′
2

(27.2.2)
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We can take the square root of the above to get

|r− r′| = r

(
1− 2r · r′

r2
+
r′

2

r2

)1/2

(27.2.3)

Next, we use the Taylor series expansion to get, for small x, that

(1 + x)n ≈ 1 + nx+
n(n− 1)

2!
x2 + · · · (27.2.4)

or that

(1 + x)1/2 ≈ 1 +
1

2
x− 1

8
x2 + · · · (27.2.5)

We can apply this approximation by letting

x
.
= −2r · r′

r2
+
r′

2

r2

To this end, we arrive at

|r− r′| ≈ r

[
1− r · r′

r2
+

1

2

r′
2

r2
− 1

2

(
r · r′

r2

)2

+ · · ·

]
(27.2.6)

In the above, we have not kept every terms of the x2 term by assuming that r′2 � r′ · r, and
terms much smaller than the last term in (27.2.6) can be neglected.

We can multiply out the right-hand side of the above to further arrive at

|r− r′| ≈ r − r · r′

r
+

1

2

r′
2

r
− 1

2

(r · r′)2

r3
+ · · ·

= r − r̂ · r′ + 1

2

r′
2

r
− 1

2r
(r̂ · r′)2 + · · · (27.2.7)

The last two terms in the last line of (27.2.3) are of the same order. Moreover, their sum is

bounded by r′
2
/(2r) since r̂ · r′ is always less than r′. Hence, the far field approximation is

valid if

β
r′

2

2r
� 1 (27.2.8)

In the above, β is involved because the approximation has to be valid in the exponent, namely
exp(−jβ|r− r′|). If (27.2.7) is valid, then

ejβ
r′2
2r ≈ 1

and then, the first two terms on the right-hand side of (27.2.7) suffice to approximate the
left-hand side.
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27.2.1 Rayleigh Distance

Figure 27.5: The right half of a Gaussian beam [74] displays the physics of the near field, the
Fresnel zone, and the far zone. In the far zone, the field behaves like a spherical wave.

When a wave field leaves an aperture antenna, it can be approximately described by a Gaus-
sian beam [74] (see Figure 27.5). Near to the antenna aperture, or the near zone, it is
approximately a plane wave with wave fronts parallel to the aperture surface. Far from the
antenna aperture, or in the far zone, the field behaves like a spherical wave, with its typical
wave front. In between is the Fresnel zone.

Consequently, after using that β = 2π/λ, for the far-field approximation to be valid, we
need (27.2.8), or that

r � π

λ
r′

2
(27.2.9)

If the aperture of the antenna is of radius W , then r′ < rmax
′ ∼= W and the far field approxi-

mation is valid if

r � π

λ
W 2 = rR (27.2.10)

If r is larger than this distance, then an antenna beam behaves like a spherical wave and starts
to diverge. This distance rR is also known as the Rayleigh distance. After this distance, the
wave from a finite size source resembles a spherical wave which is diverging in all directions.
Also, notice that the shorter the wavelength λ, the larger is this distance. This also explains
why a laser pointer works. A laser pointer light can be thought of radiation from a finite size
source located at the aperture of the laser pointer. The laser pointer beam remains collimated
for quite a distance, before it becomes a divergent beam or a beam with a spherical wave
front.
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In some textbooks [31], it is common to define acceptable phase error to be π/8. The
Rayleigh distance is the distance beyond which the phase error is below this value. When the
phase error of π/8 is put on the right-hand side of (27.2.8), one gets

β
r′

2

2r
≈ π

8
(27.2.11)

Using the approximation, the Rayleigh distance is defined to be

rR =
2D2

λ
(27.2.12)

where D = 2W is the diameter of the antenna aperture.

27.2.2 Near Zone, Fresnel Zone, and Far Zone

Therefore, when a source radiates, the radiation field is divided into the near zone, the Fresnel
zone, and the far zone (also known as the radiation zone, or the Fraunhofer zone in optics).
The Rayleigh distance is the demarcation boundary between the Fresnel zone and the far
zone. The larger the aperture of an antenna array is, the further one has to be to reach the
far zone of an antenna. This distance becomes larger too when the wavelength is short. In the
far zone, the far field behaves like a spherical wave, and its radiation pattern is proportional
to the Fourier transform of the current.

In some sources, like the Hertzian dipole, in the near zone, much reactive energy is stored
in the electric field or the magnetic field near to the source. This near zone receives reactive
power from the source, which corresponds to instantaneous power that flows from the source,
but is return to the source after one time harmonic cycle. Hence, a Hertzian dipole has input
impedance that looks like that of a capacitor, because much of the near field of this dipole is
in the electric field.

The field in the far zone carries power that radiates to infinity. As a result, the field in the
near zone decays rapidly, but the field in the far zone decays as 1/r for energy conservation.
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